

Seat No. _____

HO-003-0492002

B. Sc./M. Sc. (Sem. II) (CBCS) Examination

April - 2023

Applied Mathematics : Paper-VI

(Applied Physics
(*New Course*)

Faculty Code : 003
Subject Code : 0492002

Time : $2\frac{1}{2}$ Hours / Total Marks : **70**

Instruction : (1) All questions are compulsory.
(2) Numbers in the right margin indicate marks.

1	(a) Attempt short questions : (One mark each) 4
	(1) Solve : $xdy - ydx = 0$
	(2) Find the I.F. for $y' + \frac{1}{x}y = 1$.
	(3) Is the differential equation $(x^2 - ay)dx + (y^2 - ax)dy = 0$ exact ?
	(4) Solve : $y = px + \log p$.
	(b) Write answers of any One : 2
	(1) Solve : $(xy^2 + x)dx + (x^2y + y)dy = 0$
	(2) From differential equation for the curve $y^2 = ax + b$.
	(c) Answer any one of the following : 3
	(1) Solve : $(x^2 + y^2)dx + 2x^2dy = 0$
	(2) Solve : $y' - \frac{2y}{x+1} = x+1$.
	(d) Write answers of any One . 5
	(1) Solve : $y - 2px = \tan^{-1}(xp^2)$.
	(2) Solve : $x = py + p^2y^2$.

2 (a) Attempt short questions : **(One mark each)** **4**

- (1) If $z = x^3 + y^3 - 3axy$ then find z_x .
- (2) If $x = u(1-v), y = v(1-u)$ then find $J\left(\frac{x, y}{u, v}\right)$.
- (3) If $z = x^{-1} + y^{-1}$ then prove that $xz_x + yz_y = -z$.
- (4) Find the critical points for the surface $z = x^2 - x + y^2$

(b) Write answers of any **One** : **2**

- (1) If $z = x^y$ then find z_{xy} .
- (2) If $z = \frac{x}{y} + \frac{y}{x}$ then prove that $xz_x + yz_y = 0$.

(c) Write answers of any **One** : **3**

- (1) Expand $e^x \sin x$ in infinite terms.
- (2) Expand $\sin^2 x$ in infinite terms.

(d) Write answers of any **One** : **5**

- (1) Find the shortest distance from origin to hyperbola $xy = c^2$
- (2) Find extrema of $z = x^2 + 2y^2 - x$.

3 (a) Attempt short questions : **(One mark each)** **4**

- (1) Form P. D. E. for $z = f(x^2 + y^2)$.
- (2) Form $z_{xy} = 2y + 1$.
- (3) Solve : $p + q = 1$.
- (4) Solve : $z = px + qy + pq$.

(b) Write answers of any **One** : **2**

- (1) Form P. D. E. for $z = (x+a)(y+b)$
- (2) Solve : $xp + yq = z$.

(c) Write answers of any **One** : **3**

- (1) Solve : $p + q = x + y$.
- (2) Solve : $py^3 + qx^2 = 0$.

(d) Write answers of any **One** : **5**

- (1) Solve : $z_{xx} - z_{xy} = \cos x$.
- (2) Solve : $z_{xx} - 2z_x + z_y = 0$

4 (a) Attempt short questions : **(One mark each)** 4

- (1) Verify Roll's theorem for $f(x) = x^2 - x$, $x \in [0,1]$.
- (2) Using infinite expansion of e^x , deduce the series for e .
- (3) Show that $f(x) = e^x$, $x \in R$ is an increasing function.
- (4) Evaluate : $\int_0^1 \int_{-1}^1 x dx dy$

(b) Write answers of any **One** : 2

- (1) Interpret Lagrang's theorem geometrically.
- (2) Find c , using Lagrange's Mean Value theorem for $f(x) = \log x$, $x \in [1, e]$.

(c) Write answers of any **One** : 3

- (1) Show that $x > \log(x+1)$ for $x \in R^+$
- (2) Expand $f(x) = \tan x$ (two terms)

(d) Write answers of any **One** : 5

- (1) Evaluate : $\iint_R (x^2 + y^2) dx dy$ where R is $x^2 + y^2 \leq 1$.
- (2) Evaluate : $\iiint_R dx dy dz$ where R is the unit sphere.

5 (a) Attempt short questions : **(One mark each)** 4

- (1) Form differential equation for $y^2 = ax$.
- (2) Solve : $xdy + ydx = 0$.
- (3) If $x = uv$, $y = u + v$ find $J\left(\frac{x, y}{u, v}\right)$.
- (4) Solve : $z = px + qy + p + q$.

(b) Write answers of any **One** : 2

- (1) Solve : $p = \sin(y - xp)$.
- (2) If $x^{-1} + y^{-1} - z^{-1} = 0$ then find z_x .

(c) Write Answer of any **one** : 3

- (1) Interpret Roll's theorem geometrically.
- (2) Expand $\cos^2 x$ in infinite series.

(d) Write Answer of any **one** : 5

- (1) Evaluate : $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$.
- (2) Evaluate : $\iint_R dx dy$ where R is the region enclosed by $y = x^2$ and $y = x$.